Parameter Estimation With Partial Forgetting Method
نویسندگان
چکیده
The paper proposes a new estimating algorithm for linear parameter varying systems with slowly time-varying parameters when the rate of change of individual parameters is different. It introduces a true probability density function, describing ideally the behaviour of parameters. However, as it is unknown, we search for its best approximation. A convex combination of point estimates, defined by individual hypotheses about the true probability density function, is then approximated by a single density. That serves as the best available description of parameters’ behaviour and it is therefore suitable e.g. for prediction purposes.
منابع مشابه
Parameter tracking with partial forgetting method
This paper concerns the Bayesian tracking of slowly varying parameters of a linear stochastic regression model. The modelled and predicted system output is assumed to possess time-varying mean value, whereas its dynamics are relatively stable. The proposed estimation method models the system output mean value by time-varying offset. It formulates three extreme hypotheses on model parameters’ va...
متن کاملRailway Wheelset Parameter Estimation Using Signals from Lateral Velocity Sensor
A type of parameter estimation technique based on the linear integral filter (LIF) method, the least-absolute error with variable forgetting factor (LAE+VFF) estimation method, is proposed in this paper to estimate the railway wheelset parameters modelled as a time-varying continuous-time (C-T) system. The inputs to the parameter estimator are the control signal and the railway wheelset system ...
متن کاملFast Tracking of a Real Sinusoid with Multiple Forgetting Factors
In this paper, a recursive Gauss-Newton (RGN) algorithm is first developed for adaptive tracking of the amplitude, frequency and phase of a real sinusoid signal in additive white noise. The derived algorithm is then simplified for computational complexity reduction as well as improved with the use of multiple forgetting factor (MFF) technique to provide a flexible way of keeping track of the pa...
متن کامل[hal-00092904, v1] On-line forgetting factor adaptation for parameter estimation based diagnosis
This paper presents a fault detection method based on a classical transfer function parameter estimation algorithm in the discrete time domain. Non persistently exciting inputs plant an important problem for the convergence of the estimator. Here, the forgetting factor is adapted on-line in order to improve the convergence. Redundant discrete time transfer functions are used to improve the isol...
متن کاملA Novel Methodology for Estimating State-Of-Charge of Li-Ion Batteries Using Advanced Parameters Estimation
State-of-charge (SOC) estimations of Li-ion batteries have been the focus of many research studies in previous years. Many articles discussed the dynamic model’s parameters estimation of the Li-ion battery, where the fixed forgetting factor recursive least square estimation methodology is employed. However, the change rate of each parameter to reach the true value is not taken into consideratio...
متن کامل